Vectors Quick Notes

Monday, October 5, 2020

4:19 PM

Vectors in 2D and 3D

Friday, October 2, 2020 10:27 AM

every point in \mathbb{R}^2 has 2 coordinates, (x,y)

you can we any point to make a voctor i by drawing an arrow from the origin

in \mathbb{R}^3 , there are 3 coordinates L_{X}, y, z

Notation

The set of real numbers is R. The set

of pairs of real numbers (2D vectors) is denoted

by R², 3D is R³

Adding Versors

V+W N W

Geometra Version

$$\vec{v} = (1, 2, 3)$$
 $\vec{v} \cdot \vec{w} = (1+2, 2+8, 8+1)$
 $\vec{v} = (2, 81)$ $= (3, 10, 4)$

Sold elementuise

Comment. $\vec{v} = (3, 10, 4)$

Nultiplying by a Scalar

Start with $\vec{v} \in \mathbb{R}^3$

(notation $\vec{v} \in \mathbb{R} = \vec{v}$ is in \mathbb{R}^3 also is a 30 vector)

and $\lambda \in \mathbb{R}$ (a real #)

Lambda (just a variable)

 $\lambda \cdot \vec{v}$ is the elementuise product of \vec{v} by λ

eg. if $\vec{v} = (a, b, c)$
 $\lambda \cdot \vec{v} = (2a, 2b, \lambda c)$
Geometrically we are longthening or shortening avertor (negatives restert it backwards)

Lines in 20 ± 30

Determinent by a point on LP, and a direction

Determinent by a point on LP, and a direction

Parameterization

$$P = (a,b)$$

$$\overrightarrow{V} = (c,d)$$

O can be found by Sturling at P and moving in the direction of i (or exact opposite) aka the scaler multiple.

thus Q=P+2·2

Parametric equation Sor L:

$$L(t) = P + t \cdot \vec{v}$$

$$= (a,b) + t(c,a)$$

$$= (a+ct, b+dt)$$

LACONCISE: [stating at 1) Parameterize

$$(1,2,3)$$
 pointing $(1,-1,0)$
 $L(t) = (1+t, 2-t, 3)$

$$L(t) = (4-2t, 5-7t)$$
or $L(t) = (2+2t, -2+7t)$

Inner Product, Length,

There are many ways to desine vector multiplication Scular multiplication takes I scalar and I vector and give a rector Inner Product takes 2 vectors (Roor R3) and gives a

 $(N_1, y_1, Z_1) \cdot (X_2, y_2, Z_2)$

= N, n2 + y, y2 + 2, 22

beometric meaning.

Let = (4, 6) 6 R2

So the length of the vector is V-3-3

Distance be-lueen

$$P = (1, 2, 4)$$

$$Q = (O, I, I)$$

-> V = P - Q

$$d = \sqrt{\overrightarrow{V} \cdot \overrightarrow{V}}$$

Some Properties:

$$\vec{J}, \vec{V}, \vec{\omega} > \epsilon R^2$$
 or R^3

A)
$$(\lambda \vec{v}) \cdot \vec{w} = \lambda (\vec{v} \cdot \vec{w})$$
 commutes with scalar

(3)
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
 distributive

()
$$\vec{U} \cdot \vec{V} = \vec{V} \cdot \vec{u}$$
 reflexive

If 2 vectors point in the same direction? $\overrightarrow{V} \cdot \overrightarrow{W} = ||\overrightarrow{V}|| \cdot ||\overrightarrow{W}||$

For all 2 vectors:

 $\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \cos \theta$

So geometrically, the inner product tries to find the product of lengths, and the cost correcto for the difference in directions.

Consequences:

Vand if viv = 0

Unit Vectors

Wednesday, October 7, 2020 10:07 AM

1 erminology

of 1, also called normalized vector

î, î, k represent the unit vectors along the N, y, & ares Other unit vectors are any vector with magnitude

Normalizing a vector gives a vector in the same direction but with length of 1

normalizing vertor v

Orthogonal Projection

Friday, October 9, 2020 10:04 AM

for any valor v , there is a scalar multiple of in such that

is orthogonal to war is the orthogonal projection of V outs w

formula

Cross Product

Friday, October 16, 2020 10:03 AM

Cross Product

$$\overrightarrow{\nabla} \times \overrightarrow{\nabla} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \overrightarrow{\nabla} & \overrightarrow{j} & \overrightarrow{j} \\ \overrightarrow{\nabla} & \overrightarrow{j} & \overrightarrow{j} \end{vmatrix}$$

a 3x3 determinant with the 3 unit vectors at the top and I and w as row vectors underneath

$$\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \times \|\vec{w}\| \sin \theta$$
where θ is the δ between \vec{v} and \vec{w}

Properties:

Distributive:
$$\vec{V} \times (\vec{u} + \vec{w}) = \vec{V} \times \vec{u} + \vec{V} \times \vec{w}$$

Skew Symetric:
$$\vec{V} \times \vec{\omega} = -\vec{\omega} \times \vec{v}$$

$$Scalar : \lambda \overrightarrow{u} \times \overrightarrow{V} = \lambda (\overrightarrow{u} \times \overrightarrow{V})$$

Triple Product:
$$\vec{v} \cdot (\vec{v} \times \vec{w}) = \vec{v}$$

Matrices and Determinants

Matthes all Determinants

Friday, October 9, 2020 10:24 AM

$$A = \begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}$$
where α_{ij} is elements by iron and j column

The derberminant is a real number:

$$det A = \begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}$$

$$\alpha_{12} = \begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}$$

$$\alpha_{11} = \begin{bmatrix}
\alpha_{12} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}$$

$$\alpha_{12} = \begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}$$

$$det A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$$

= sum of the products of the backwards diagonals
the sum of the products of the backwards diagonals

1 a 5 /

det / a 5 / = area of parallelogram 3 × 3: volume of the parallopiped. Right Hand Rule Sollow the right hand rule, then $\left| \frac{\vec{v}}{\vec{v}} \right| \ge 0$, otherwise it is ≤ 0

Planes

Friday, October 16, 2020 10:27 AM

Équation:

Point p that is on the plane = (Yo, Yo, Zo)

Vector V that is normal to the plane (b) = (a, b, c)

(x,y,Z) is in the plane is

 $\frac{7}{V}$. ((4,4,2)-p)

 $= a \cdot (x - x_0) + 5(y - y_0) + c(z - z_0) = 0$

Distance From point to plane:

is the projection of the distance vector from the origin to the point onto the normal vector of the plane as it goes to O.

Thinking of Vectors as Matricies

Saturday, October 17, 2020

5:36 PM

Visualization: Level Sets and Taking Sections

Monday, October 19, 2020 10:24 AM

Level Sets

For some S(x,y), we can graph a representation by assigning S(x,y) = C Some

some set of c.

Creatos a Espological graph.

Example:

Z = X 2 + y 2

for 2=(e[0,4]

Taking Sections

Set axial values to

0, then graph in 20 space.

f(x,y) = x2+y2

 $2 = \chi^2 + y^2$

$$2 = 0 + y^2$$

$$2 = x^2 \Theta y = 0$$

For R3 -> R

$$S(\gamma, \gamma, 2) = \gamma^2 + \gamma^2 + 2^2$$

ue must take level sets to visualize

íe:

in khis very we can visualize functions in more complex spaces.

Sets and Neighborhoods

Wednesday, October 21, 2020 10:16 AM

se€ in R² or R³ Closed

all points radius r from vector ?

Open set a closed set but without the boundary

Boundary set the boundary points

Neighborhnods

Similar to a set but with no radial definition also Sollows the closed open, boundary rules.

Limit of P

Wednesday, October 21, 2020 10:19 AM

Limit of P

Limit of f(x,y) as (x,y) approaches Pis

 $\int_{(x,y)\to p} f(x,y) = L$ line L

there is an open neighborhood of publich maps into this interval.

A function is continous if for every $(a,b) \in \mathbb{R}^2$, the limit of $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

Example of function w/ no

limit as (x,y) -> (0,0)

$$S(x,y) = \frac{x^2}{x^2 + y^2}$$

If you approach along the line y=ax

$$S(\gamma,\alpha\gamma) = \frac{\gamma^2}{\chi^2 + \alpha^2 \chi^2} = \frac{1}{1 + \alpha^2}$$

Cherefore f(x, ux) is constant

but changes

Ehe

$$\lim_{(x,y) \Rightarrow (a,b)} \frac{x^2}{x^2 + y^2} does not exist$$

Di Sterentiation

Differentiable functions are the ones that can be approximated by linear functions.

Linear function:

$$S(x,y) = \mathbb{R}^2 \rightarrow \mathbb{R}$$

$$= \alpha + bx + cy$$

$$S(x,y,z) = \mathbb{R}^3 \rightarrow \mathbb{R}$$

$$= \alpha + bx + cy + dz$$

$$(x_0,y_0) \in \mathbb{R}^2$$

other example: a+ b(x-No)+c(y-yo)

A Sunction is differentiable if at $(x_0, y_0) \in \mathbb{R}^2$, if there is a linear Sunction $l(x, y) = \alpha + 5x + cy$ so that

 $\lim_{(x,y)\to(x_0,y_0)} \frac{S(x,y)-l(x,y)}{\|(x,y)-(x_0,y_0)\|} = 0$

 $\lim_{(x,y,z)=(x_0,y_0,z_0)} \frac{\int_{(x,y,z)}^{(x,y,z)} - \ell(x,y,z)}{\|(x,y,z) - (x_0,y_0,z_0)\|} = 0$

We say that I is the linear approximation of S at (No. y.)(Zo)

A consequence of this is $l(x_i, y_i) = f(x_i, y_i)$ We can use this to define partial derivatives:

the partial derivative
$$\frac{\partial f}{\partial x}(x_0, y_0) = 6$$

$$\frac{\partial f}{\partial x}(x_0, y_0) = 6$$

Computing Partial Derivatives

If f(x,y) is differentiable at (x,y,) then:

 $\frac{\partial f}{\partial x} (x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$

Note: that $f(x_0 + h, y_0)$ is a 1-variable sunction in h, and $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f(x_0 + h, y_0)}{\partial h}\Big|_{h=0}$

Linear Approximation

The linear approximation of some function f (x,y) at

l(x,y) = 5(x0,y0) + \frac{1}{2}(x0,y0). ((x,y)-(x0,y0))

or

$$\ell(x,y) = \frac{\partial f}{\partial x}(x-x_0) + \frac{\partial f}{\partial y}(y-y_0) + f(x_0,y_0)$$

and for $y(x,y,z) = (x_0, y_0, z_0)$:

 $l(x,y,z) = g(x_0,y_0) + \nabla g(x_0,y_0,z_0) - ((x,y,z) - (x_0,y_0,z_0))$

 $\mathcal{L}(x,y) = \frac{\partial g}{\partial x} (x - x_0) + \frac{\partial g}{\partial y} (y - y_0) + \frac{\partial g}{\partial z} (z - z_0) + g(x_0, y_0, z_0)$

$$\frac{E_{xumple}}{3}$$

$$\frac{3f}{3x}(x,y) = e^{xy}$$

$$\frac{3f}{3x}(2,1) = xe^{xy}|_{(2,1)} = 2 \cdot e^{2}$$

$$g(x,y,z) = Sm(xz) + y^{2}z$$

$$\frac{3g}{3z} = x \cos(xz) + y^{2}|_{(2,1)}$$

$$g(x,y,z) = 1 + x^{2} + xy + yz$$

$$\frac{3g}{3x} = 2x + y = 2 + 1 = 3$$

$$\frac{3g}{3y} = x + z = 1 + 1 = 2$$

$$\frac{3g}{3z} = y = 1$$

$$l = a + 3x + 2y + z$$

$$l(1,1,1) = g(1,1,1)$$

$$a + 3 + 2x + 1 = 4$$

$$a + 6 = 4$$

$$a = -2$$

l = -2+3x+2y+Z alternatively you can use "point - slope" Soin:

$$l = 3(x-1) + 2(y-1) + (z-1) + 4$$

Let S(N,y) (or g(N,y,z)) be a differentiable function,

the derivative of S(N, y) at (No, yo) is:

$$Df(x_0, y_0) = \begin{bmatrix} \frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \end{bmatrix}$$

The gradient of
$$f(x,y)$$
 at (x_0, y_0)
is the vector
$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

for g(x,y,z):

$$\nabla g(x_{0}, y_{0}, z_{0}) = \left\langle \frac{\partial g}{\partial x}(x_{0}, y_{0}, z_{0}) \right\rangle \frac{\partial g}{\partial y}(x_{0}, y_{0}, z_{0}), \frac{\partial g}{\partial z}(x_{0}, y_{0}, z_{0}) \right\rangle$$

In general, the derivative is the matrix of each partial derivative, and the gradient is the vector where corresponding dimensions are the partial derivatives.

Geometrica lly

V + (xo, yo, zo)

- 1. points in the direction of (xo, yo, zo)
- 2. || \(\nabla \operation 1 \) | 1.

If f(x,y,z)=cthen ∇f is largest to the level set at cand the tangent plane is $O=\nabla f\cdot (x-x_0, y-y_0, z-z_0)$ If points in the direction of the greatest increase.

Directional Differentiation

Wednesday, November 4, 2020 9:59 AM

Finds the rate of change of a function towards a given direction (and velocity).

Duf = Df. unit (v)

and should return a scalar value.

Second Derivative

Friday, November 6, 2020 10:32 AM

Suppose S(x,y) is a C^2 -function $(C^2 = twice$ continuously disterentiable). The second derivatives:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial x}{\partial x} \right)$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial x}{\partial x} \right)$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

Hessian Matrix

$$\begin{bmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y^2} \\
\frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y^2}
\end{bmatrix}$$

IS
$$f$$
 is C^2 -Sunction, then $\frac{\partial f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$

Use

Determining wether a critical point is a maximum or minimum where a critical point is where $\nabla f(x,y) = \langle 0,0 \rangle$.

Let S(r,y) be a function with a critical point (ro. yo) let the Hessian modris

H= [a b] be the matrix at (xo.yo)

The second derivative test (for 2D functions): if $\frac{\partial^2 f}{\partial x^2}$ or $\frac{\partial^2 f}{\partial y^2} > 0$ AND det (H) z O then (x_0, y_0) is a local min

if $\frac{\partial^2 f}{\partial \kappa^2}$ or $\frac{\partial^2 f}{\partial y^2}$ LO AND det(H) >0 then (xorya) is a local max

if det (H) (O then (xo,yo) is a saddle point.

Paths & Curves

A path is a function $\overline{c}(t) = [a, b] \longrightarrow \mathbb{R}^2$ for \mathbb{R}^3)

A curve is the range of a path.

The derivative of a path $\overline{C}(t) = (x(t), y(t))$ is the vector

the meaning of [(t):

if ['(t) t (0,0) then it's a vector tangent to the path

The velocity of a path is $E'(\xi) = \langle \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \xi} \rangle$

 $\frac{\partial^2 z}{\partial t^2}$

The acceleration of a path is $\overline{c}''(t) = \langle \frac{\partial^2 N}{\partial t^2} - \frac{\partial^2 y}{\partial t^2} \rangle$

Force on an object is m. = "(E).

Displacement and Arc Length

Monday, November 23, 2020 10:36 AM

For a curve $C \in \mathbb{R}^2$ or \mathbb{R}^3 parameterized by the path $c(t) = \langle x(t) y(t) y(t) \rangle$

- 1. The displacement between t=a and t=b is c(b)-c(a)
- 2. The length of the are between t=a and t=b:

$$\Delta N = N(b) - N(a) = \int_{a}^{b} N'(b) db$$

$$\Delta y = y(b) - y(c) = \int_{\alpha}^{b} y'(E) dE$$

Displacement =
$$||\langle \Delta x \rangle \Delta y \rangle \langle \Delta z \rangle||$$

= $\int \Delta x^2 + \Delta y^2 + \Delta z^2$

3. The arc length is the length of the curve C between $t = \alpha$ and t = b. Rather than integrating velocity, we integrate speed.

 $\bar{c}(t_{ii}) - \bar{c}(t_i) = displacement \approx \bar{c}'(t_i) \cdot \Delta t$

length between $\overline{c}(t_i)$ and $\overline{c}(t_{i+1}) \approx ||\overline{c}(t_{i+1}) - \overline{c}(t_i)||$

≈ // c'(6;)//a €

So the arclength a \(\sum_{1/2} 1/2 \cdot(L.11bt)

So the arc length
$$\approx \sum_{i=1}^{n} ||\bar{c}'(\xi_i)|| \Delta \xi$$

Arc length of
$$\overline{c} = \int_{a}^{b} ||\overline{c}'(t)|| dt$$

sometimes - he are length and the length of the curve.

eg.
$$\overline{c}: [0, 4\pi] \rightarrow \mathbb{R}^2$$

$$\overline{b} \rightarrow (cos(b), sin(b))$$

arcleugth =
$$\int_{0}^{4\pi} ||c'(t)|| dt$$

$$= \int_{0}^{4\pi} \sqrt{(-\sin(t))^{2} + (\cos(t))^{2}} dt$$

$$= \int_{0}^{4\pi} \sqrt{|} dt$$

$$= \int_{0}^{4\pi} \sqrt{|} dt$$

but the length of the path should be ZT. in this example, we go around the circle twice.

Rules of Differentiation

Wednesday, October 28, 2020 10:46 AM

Rules

A) Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
. Let $\lambda \in \mathbb{R}$

$$\mathbb{R} = \mathbb{R} \setminus \mathbb{R} = \mathbb{R} \setminus \mathbb{R}$$

$$D(\lambda f(x,y)) = \lambda Df(x,y)$$

$$\begin{bmatrix} \frac{\partial \lambda}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} = \lambda \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}$$

also:
$$\nabla (\lambda f) = \lambda \nabla f$$

B)
$$f_{g}: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$D(f+g) = Df + Dg$$

$$[a b] + [c d] = [a+c b+d]$$

() Product Rule
$$f, g: \mathbb{R}^2 \to \mathbb{R}$$

$$D(fg) = fDg + gDf$$

D) Quolient Rule

$$f, g: \mathbb{R}^2 \to \mathbb{R}$$

 $D(\frac{f}{g}) = \frac{g Df - f Dg}{g^2}$

Let
$$\overline{C}: \mathbb{R} \longrightarrow \mathbb{R}^3$$
 be a cone

Let
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 be a scalar

$$= \underbrace{D(f \circ \overline{c})(t_0)}_{\text{leal } \#} = \underbrace{\nabla f(\overline{c}(t_0))}_{\text{3D vector}} \cdot \underbrace{D\overline{c}(t_0)}_{\text{3D vector}} \quad \text{(Chain } \text{Rule)}$$

where
$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{pmatrix}$$
 takes inputs from

the vector output of c(to).

The hard case:

Let
$$F: \mathbb{R}^d \to \mathbb{R}^m$$
 so $F(\langle x_1, ..., x_d \rangle) = \langle F, \langle (x_1, ..., x_d \rangle), ..., F_m(\langle x_1, ..., x_d \rangle) \rangle$
 $f(x_1, ..., x_m \rangle) = \langle f(x_1, ..., x_m \rangle) = \langle f(x_1, ..., x_m \rangle) \rangle$

RI-> Rm -> Rn must be followed.

$$\frac{D(b \circ F)}{n \times l} = \frac{D(b(F(x_1, \dots, x_e)), DF(x_1, \dots, x_e)}{n \times l}$$

$$\lim_{n \to \infty} \frac{m \times l}{m \cdot l \cdot m \cdot l \cdot m \cdot l \cdot p \cdot l \cdot cab \cdot ion}$$

Where

$$= y_1 \left[\begin{array}{c} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{array} \right]$$

Matrix Multiplication

Friday, October 30, 2020 10:28 AM

$$Given$$
 $A = \begin{bmatrix} \\ \end{bmatrix} n \times m$

$$B = \begin{bmatrix} \end{bmatrix} m \times \ell$$

$$A \times B = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} n \times \ell$$

where the term
$$T_{ij}$$
 is computed by taking the ith vow vector of A and \times jth column vector of B

$$(A \times B)_{ij} = A_{row i} \cdot B_{colj} = \sum_{k=1}^{n} \alpha_{ik} \cdot b_{kj}$$

Optimization

Friday, November 13, 2020

Finding Local Extrema:

Critical points are where Df = 0

Use heshian matrix to determine type of critical point.

Finding Global Extrema:

Let AER be a closed and bounded set.

closed: is contained around some boundary path

bounded: is finite in size

Let f: R2 - R

To find global extrema of fin the set A

1) Find all the local extrema on the interior of A of f, ie Of = O

2) find all the local extrema on the boundary of A of f. ie plug A into f and find critical points.

3) The global extrema is the most extreme (largest/smallest value(s) between the local extrema in the set A and the boundary.

LaGrange Multipliers

Monday, November 16, 2020 10:36 AM

We needed to optimize the functions DA (on some boundary)
La Grange Multipliers help optimize on DA, especially when DA is
a level set

The idea

Suppose we have curve $C \in \mathbb{R}^2$ and $S : \mathbb{R}^2 \to \mathbb{R}$

If is tangent to Cat (vo, yo) then the directional derivative:

∇ f (~, y,) · v

approximates the change in f as you move along v.

If $Of(no,y_0) \cdot \vec{r} > 0$, then f is increasing in direction \vec{r}

If $\nabla f(x_0, y_0) \cdot -\vec{y} \in \mathcal{O}$, then f is decreasing in direction $-\vec{y}$

both mean that the paint is not at a maximum

or a minimum of 5 on C.

The only way (x_0, y_0) can be a local extrema is if $\nabla f(x_0, y_0)$ is normal to curve C.

Equation:

 $\nabla f = \lambda \cdot \nabla b$ where ∇b is the gradient of the boundary as a non-parametrized function (ie. $\chi^2 \cdot y^2 = 4$)

Theorem

Let $g: \mathbb{R}^2 \to \mathbb{R}$ be a scalar function and let $S \in \mathbb{R}^m$ be the levelset be the levelset of level C.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a scalar function

Suppose $(a_1, ..., a_n) \in S$ is a local extremma for f on S.

If $\nabla g(a_1, ..., a_n) \neq 0$ (ie a normal vector)

then $\nabla f(a_1, ..., a_n) = \lambda \nabla g(a_1, ..., a_n)$ for some $\lambda \in \mathbb{R}$ [TI: dr: the critical points for a function f on a level $S \in S$ for g are points where $\nabla f = \lambda \nabla g$ or $\nabla g = 0$

Integration

Monday, November 30, 2020 10:02 AM

Double Integrals as volumes

Let R = [a, b] x [c, d] & R² be the following rectangle:

The volume over 2=f(x,y) between [a,b] x [c,el]

 $0 \le z \le f(x,y)$ where $(x,y \mid \in R)$

 $\iint\limits_{R} f(x,y) \, dy \, dx = \iint\limits_{c} \int_{a}^{d} f(x,y) \, dx \, dy$

is the volume of S

read: "the integral" of fover R

Cavalieri"s Principle

Monday, November 30, 2020 10:16 AM

Cavalieri's Principle

Given some BD volume:

we can slice the volume into slices

Volume of $S = \sum_{i=1}^{N} V_i$

where Vi = (cross sectional area) - Dy

We define a function

A(y) = (cross sectional area at y)

Volume of SX Z A(y:) Dy

as n -> 00

 $S = \int_{c}^{d} A(y) J_{y}$

The volume is the integral of the cross sectional area.

Integration Rules

Monday, November 30, 2020 10:31 AM

"Partial Integrals") x + y dx

y is constant, integrat with normal rules

 $= \frac{1}{2} x^2 + yx$

Iberative Integrals

Is the same as: fdfbf(x,y) dx dy

 $\int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, dy \right) \, dx$

- · Treat of cus constant
- · Integrate ul respect to y
- · Computes the of as constant which gives the cross Sectional area

Summary

Wednesday, December 2, 2020 10:12 AM

Integrating over rectangles

Let $R = [u, b] \times [c, d] \in \mathbb{R}^2$ We want to define $\int \int S(\gamma, y) dy dx$ RSor any continous function $S(\gamma, y)$

Rieman Sum Definition

The integral of f(x,y) over Ris: $\iint_{R} f(x,y) \, dy \, dx = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{i}, y_{i}) \, \Delta y \, \Delta x \right)$

Properties

1. If $f(x,y) \ge 0$ then: Riemann Sum = Volume of Solid

2. $\iint f(x,y)dydx \quad can \quad be \quad computed \quad iteratively$ $= \iint \left(\iint_{C} d S(x,y)dy \right) dx = \iint_{C} d \left(\iint_{C} b \left(x,y \right) dx \right) dy$

Integrating over general regions

- I 10, the only regions we integrate over are intervals.
- In 2D, there are non rectangular regions that can be integrated over.

To simplify, we only consider elementary regions of integration. A region is called y-simple if you can describe it with 2 sunctions of x: $f_1(x)$, $f_2(x)$ where R is $(x,y) \in \mathbb{R}^2$ satisfying $f_1(x) \subseteq y \subseteq f_2(x)$ and $x \in [a,b]$

A region is x-simple if there are gly), yely)
So that:

R is $(x,y) \in \mathbb{R}^2$ satisfying $g_{i}(y) \subseteq \mathcal{N} \subseteq \mathcal{Y}_{2}(y)$

A region is simple if it is x-simple and y-simple. Integrating over some simple region $y \in [c,d] \quad g_{s}(y) \quad g_{s}(y)$

$$\iint_{R} f(x,y) dy dx = \iint_{c} \left(\int_{g_{s}(y)}^{g_{s}(y)} f(x,y) dy \right) dx$$

$$\chi \in [c, d] \quad f_{s}(x) \quad f_{s}(x)$$

$$\iint_{R} f(x,y) dx dy = \iint_{c} \left(\int_{f_{s}(x)}^{f_{s}(x)} f(x,y) dx \right) dy$$

$$TF \quad R \quad is \quad x-simple \quad and \quad y-simple :$$

$$\iint_{R} f(x,y) dy dx = \iint_{g_{s}(x)} f(x,y) dx dy$$

$$= \iint_{f_{s}(x)}^{f_{s}(x)} \int_{g_{s}(x)}^{g_{s}(x)} f(x,y) dx dy$$

Wednesday, December 9,2020 10:01 AM

Changing the order of integration

Start with a simple region

- x simple: top and bottom are $f_1(x)$, $f_2(x)$ f_3 , imple: left and right are $g_1(x)$, $g_2(y)$ f_3 , g_4 , g_4 , g_5 , g_7 , g_8 , g_9 ,

$$R = [a,b] \times [c,d] \times [e,f]$$

$$=\lim_{N\to\infty}\left(\frac{Z}{Z}\frac{Z}{Z}\frac{Z}{Z}f(x_i,y_i,z_i)\Delta Z\Delta y\Delta x\right)$$

$$\int_{\alpha}^{b} \int_{c}^{d} \int_{e}^{f} f(x, y, z) dz dy dx$$