Vectors Quick Notes

Monday, October 5, 2020 4:19 PM

Vertoos $<$ 1 $, y, z$ dot product: sum of product of dims. $a \cdot a = |a|^{2}$ inner poduct as det product. X botween 2 rectors $|a|b|$ cos θ $a-b$ $\theta = cos^{-1}(\frac{a \cdot b}{(\alpha/b)})$ $(a \cdot b) \le |a||b|$ projection of v on a $\frac{6}{12}$ a \overline{a} deferminant $<\alpha, b>$ らつ α $\langle c, d \rangle$ $\overline{\mathcal{A}}$ α $\overline{5}$ $\frac{2a}{3}$ $\overline{\mathcal{A}}$ volume of the \overline{a} parallelpiped
garallelpiped
ganeralized volume $\frac{1}{\sqrt{1}}$ د ال رنگ

 α \rightarrow $= ad - bc$ α etimination: gaussian $\overline{2}$ $\overline{\mathscr{A}}$ $6c$ $\overline{}$ $\overline{\mathcal{S}}$ d e \leftarrow Z h 9 $\overline{2}$ $\overline{2}$ · row snap $\frac{3}{2}$ \rightarrow · maltiply a row \rightarrow -2 Lz · add a row $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ k $\langle A, y, z \rangle$ $rac{1}{2}$ 0 \overline{z} $\langle x, y, z \rangle$ \mathcal{Z} - 7 L_{1} \Rightarrow $\overline{\psi}$ $\overline{2}$ L_3 k $\frac{1}{\sqrt{1-\frac{1}{2}}}$ $\overline{2}$ $\overline{}$ $\left($ \mathcal{Z} $-3 - 12$ $\frac{1}{2}$ \circledcirc $\overline{}$ ⋦ \mathcal{Z} $L_3 - 4L_1 \rightarrow L_3$ $\overline{}$ $\begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \end{array}$ \tilde{z}

Quick cross product $a b c$ de f $q h$ \overline{c} ϵ A $-a$ b \overline{b} $de \in$ \overline{d} $\frac{1}{\epsilon}$ $\overline{9}$ $\frac{1}{\omega}$ h aei + bfg + cdh - (ceg + ash+ bdi,

Vectors in 2D and 3D

every point in R² has 2 coronales, (x, y) you can use any point to make a voctor v by drawing an arrow from the origin

in \mathbb{R}^3 , there are 3 Coordinates Lx, y, 20

Notation The set of real numbers is R. The set of pairs of real numbers (2D vectors) is demoted $\frac{1}{2}y$ \mathbb{R}^2 , 30 is \mathbb{R}^3

 $Vers$ on

Geometr -

Adding Vertors

 $W = (1, 2, 3)$ $W = (1, 2, 3)$ $\vec{v} = (2, 81)$ $= (3,10,4)$ (celd elementurise / comment. Can't celd 20 à 30 vectors together Multiplying by a Scalar start with $\vec{v} \in \mathbb{R}^3$ Cnotation $\vec{v} \in \mathbb{R}$ = \vec{v} is in \mathbb{R}^3 alca is a 3D vector) and λ of R (a real #) 1 lambda (just a variable) λ . \overline{v} is the glementarise product of \overline{r} by λ eg. if $\vec{v} = (a, b, c)$ $\lambda \cdot \vec{v} = (\lambda a, \lambda b, \lambda c)$ Geometoically we are longthening or shortoning Gverkor (negatives resteet it backnowds) $Lines in 2D \leq 3D$

MATH 20C Page 6

Determineer by a point on L P , and a direction

Petermineer by a point
on L P, and a direction
P Parameterszation $P = (a, b)$ $\overrightarrow{V} = (c,d)$ Q can be found by Starting at P and moving in the direction of \vec{v} (or exact opposite) aka the scalar multiple. $ln \omega_5$ Q = P+ $\lambda \cdot \vec{v}$ Parametric equation Sor L: $L(t) = P + E \cdot \vec{v}$ $=$ $(a,b) +$ $t(c,a)$ $= (a + ct, b + dt)$ Envertise: [stating at 1) Parameterize

(1,2,3) *pointing* (1,-1,0)
\n
$$
L(t) = (1+t, 2-t, 3)
$$

\n2) *Parametric line between* (4,5)
\nand (2,-2)
\n $L(t) = (4-2t, 5-7t)$
\nor $L(t) = (2+2t, -2+7t)$

Inner Product, Length, Distance

Monday, October 5, 2020 9:53 AM

There are many very to define vectors multiplications.

\nSolution multiplization takes 1 scalar and functions and give integers.

\nInner R about fakes 2 vectors (f'sr f'); and gives a R

\n
$$
(N_1, y_1, z_1) \cdot (N_2, y_2, z_2)
$$
\n
$$
= N_1 N_2 + 3 j_1 y_2 + 2 j_2
$$
\n
$$
= N_1 N_2 + 3 j_1 y_2 + 2 j_2
$$
\n
$$
= N_1 N_2 + 3 j_1 y_2 + 2 j_2
$$
\n
$$
= N_1 N_2 + 3 j_1 y_2 + 2 j_2
$$
\n
$$
= N_1 N_2 + 3 j_1 y_2 + 2 j_2
$$
\n
$$
= N_1 N_2
$$
\n
$$
= \frac{N_1 N_1}{N_1 N_2}
$$
\n
$$
= \frac{N_1 N_2}{N_1 N_2}
$$
\n
$$
= \
$$

 $(\lambda \vec{v}) \cdot \vec{w} = \lambda (\vec{v} \cdot \vec{w})$ commutes with scalar $\mathbb A$) \vec{u} \vec{v} $\vec{v$ $\begin{array}{ccc} & & & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\ & & & \vee & \vee & \vdots & \vee & \vee \end{array}$ $reflexive$ If 2 vectors point in the sume direction! $\vec{v}\cdot\vec{w} = ||\vec{v}||\cdot||\vec{w}||$ For all 2 vectors: $\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot cos \theta$ So geometrically, the inner product tries to find the product of lengths, und the cos & corrects for the difference in directions.

Consequences. $S^{msequence}$
 T^{mol} \vec{w} are orthogonal (\pm) if $\vec{v} \cdot \vec{w} = 0$

Unit Vectors

Wednesday, October 7, 2020 10:07 AM

Terminology erminology
c, j, k represent the unit vectors along the x, y, z ares C, J, k represent une once voors only
Other unit vectors are any rector with magnitude of 1, also called normalized vector Normalizing a vector gives a vector in the same direction but with langth 04 1 $\frac{1}{2}$ $|| \sqrt[3]{||}$

 \overbrace{V}

normelizing vector v

Orthogonal Projection

Friday, October 9, 2020 10:04 AM

formula

 $(\vec{v} - \lambda \vec{\omega}) \cdot \vec{\omega} = 0$ $\vec{v} \cdot \vec{\omega} = \lambda \vec{\omega} \cdot \vec{\omega} = 0$ $v: w = \lambda w$
 $\overrightarrow{v} \cdot \overrightarrow{w} = \lambda w \cdot \overrightarrow{w}$
 $\lambda = \frac{v \cdot \overrightarrow{w}}{\overrightarrow{w} \cdot \overrightarrow{w}}$ $\vec{u} \cdot \vec{\omega}$
 $\vec{\lambda} \cdot \vec{\omega} = (\frac{\vec{v} \cdot \vec{\omega}}{\vec{\omega} \cdot \vec{\omega}}) \cdot \vec{\omega}$

Cross Product

Friday, October 16, 2020 10:03 AM

Class	Pridue E
$\nabla \times \vec{w} = \begin{vmatrix} i & j & k \\ k & \vec{w} & s \end{vmatrix}$	
a $5x3$ determinant with the 3 and values at the top and \vec{w} and \vec{w} as row vectors undemach	
$ \vec{v} \times \vec{w} = \vec{v} \times \vec{w} $ sin θ	
Where $ \theta $ is the 6 between \vec{v} and \vec{w}	
P_{19} perbeies:	$\vec{v} \times (\vec{w} + \vec{w}) = \vec{v} \times \vec{w} + \vec{v} \times \vec{w}$
$Skew$ $Symebic:$ $\vec{v} \times (\vec{w} + \vec{w}) = \vec{v} \times \vec{w} + \vec{v} \times \vec{w}$	
$Skew$ $Symebic:$ $\vec{v} \times \vec{w} = \lambda(\vec{w} \times \vec{v})$	
$Scal$ \vec{w} \vec{v} \vec{v} \vec{w} \vec{v} \vec{w}	

Matrices and Determinants

Friday, October 9, 2020 10:24 AM

$$
A = 2 \times 2
$$
 matrix:
\n $A = [a_{11} \ a_{22}]$ where a_{3j} is elements by row
\nand j column
\nThe determinant is a real number:
\n $d_{12} = 1$ $a_{13} = a_{12} = a_{11} \cdot a_{21}$
\n $d_{21} = a_{22} = a_{11} \cdot a_{22} = a_{12} \cdot a_{21}$

A 3
$$
\times
$$
 3 $mu_{u}ln \times$
\nA = $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$
\nA = $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

\n
$$
= 50m \text{ of the points of the backwards diagonals}
$$
\n

\n\n
$$
= 50m \text{ of the points of the brackets along the lines of the points.}
$$
\n

 $\hat{r} \hat{r} = \hat{r}$

$$
Geometric Mearing: \n2 \times 2 : \begin{vmatrix} c_{\alpha} & 5 \\ c_{\alpha} & d \end{vmatrix}
$$
\n
$$
2 \times 2 : \begin{vmatrix} c_{\alpha} & 5 \\ c_{\alpha} & d \end{vmatrix}
$$
\n
$$
2 \times 2 : \begin{vmatrix} c_{\alpha} & 5 \\ 0 & 0 \end{vmatrix}
$$

$$
1 - 1 - 1 = 0
$$
\n
$$
\frac{\log_{2} 2 + \frac{2}{3}}{\log_{2} 2 + \log_{2} 3}
$$
\n
$$
\frac{\log_{2} 2 + \frac{2}{3}}{\log_{2} 2 + \log_{2} 3}
$$
\n
$$
\frac{3}{2} \times 3 = \sqrt{3}
$$
\n
$$
\frac{3}{2} \times 3 = \sqrt{3}
$$
\n
$$
\frac{3}{2} \times \frac{1}{2} = \frac{3}{2}
$$
\n
$$
\frac{3}{2} \times \frac{1}{2} = \frac{3}{2} \times \frac{1}{2
$$

Planes

Friday, October 16, 2020 10:27 AM

Equation: $\overline{P_{oint}}$ p that is on the plone = (X_0, Y_0, Z_0) Vector \vec{v} that is normal to the plane $(\underline{h}) = \langle \alpha, \beta, \alpha \rangle$ (x,y,z) is in the plane is \overrightarrow{V} . $(11, 11, 2) - p$) $= 0.6$ (x - γ_{0}) + 5 (y - y,) + c (z - z,) = 0 Distance From point le plane. is the projection of the distance vector From the origin to the point onto the normal vector of the plane as it goes to O .

Thinking of Vectors as Matricies

Saturday, October 17, 2020 5:36 PM

 $\overrightarrow{V} = \langle x, y, z \rangle = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

 $T = [x y 2]$

Visualization: Level Sets and Taking Sections

Monday, October 19, 2020 10:24 AM

MATH 20C Page 18

in klis nay me can visualize Sunctions in more
complex spaces.

Sets and Neighborhoods

Wednesday, October 21, 2020 10:16 AM

Sets
Closed set in \mathbb{R}^2 or \mathbb{R}^3 all points radius r from $\frac{\sqrt{r}}{r}$

Open set a closed set but without the boundary

Boundary set the boundary points

Neighborhoods Similar le cesel but with no radial definition also Sollous the closed open, boundary $rule.01in$

Limit of P

Wednesday, October 21, 2020 10:19 AM

Limit of P
Limit of $5(x,y)$ as (x,y) approaches P is
line L : $\lim_{(x,y)\to P} 5(x,y) = L$
three is an open neighbors has of P which maps into this interval.
$A = 5$ and P is a polynomial.
$A = 5$ and P is a polynomial.
$A = 5$ and P is a polynomial.
$(a,b) \in \mathbb{R}^2$, the $\lim_{(x,y)\to(a,b)} (x,y) = 5(a,b)$
5 is a solution of P and P is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
5 is a polynomial.
6 is a polynomial.
7 is a polynomial.
8 is a solution.

Friday, October 23, 2020 10:15 AM

the partical derivative
$$
\frac{\partial f}{\partial x}
$$
 (x_0, y_0) = 6
 $\frac{\partial f}{\partial x}$ (x_0, y_0) = C

Computering Partial Derivatives

\n
$$
\overline{I5} = \frac{1}{3}(a, y) \quad \text{is} \quad \text{d.6} \quad \text{for } (a, y) \quad \text{then } (a, y) \quad \text
$$

Linear Approximation	of some function	So	So	So	So	So	So	So
(α, y, y)	$=$ $5(\alpha, y, y) + \nabla f(\alpha, y, y)$	$(\lambda, y, y) - (\lambda, y, y)$						
$l(\alpha, y) = 5(\alpha, y, y) + \nabla f(\alpha, y, y) + (\lambda, y, y) - (\lambda, y, y)$								
$0 \cap$	$l(\alpha, y) = \frac{\partial f}{\partial \alpha} (\alpha - \alpha, y) + \frac{\partial f}{\partial y} (y - y, y) + f(\alpha, y, y)$							
$0 \cap$	$l(\alpha, y, z) = g(\alpha, y, z) + \nabla g(\alpha, y, z, z) + (\alpha, y, z) - (\alpha, y, z, y, z, y)$							
$0 \cap$	$l(\alpha, y) = \frac{\partial g}{\partial \alpha} (\alpha - \alpha, y) + \frac{\partial g}{\partial y} (\alpha - y, y) + \frac{\partial g}{\partial z} (\alpha - z, y) + g(\alpha, y, z, y)$							

$$
\frac{1}{2}\left(\frac{x}{m}\right) = e^{\alpha x}
$$
\n
$$
\frac{2^{x}}{2^{x}}\left(\alpha, y\right) = \frac{1}{2}e^{\alpha y}
$$
\n
$$
\frac{2^{x}}{2^{x}}\left(\alpha, y\right) = \frac{x e^{\alpha y}}{2}
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = \frac{x e^{\alpha y}}{2}
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = \frac{1}{2}e^{\alpha y} \left(\alpha x\right) + \frac{1}{2}e^{\alpha y}
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = 1 + \alpha^{2} \cdot \alpha y + \frac{1}{2}e^{\alpha y}
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = 1 + \alpha^{2} \cdot \alpha y + \frac{1}{2}e^{\alpha y}
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = 1 + \alpha^{2} \cdot \alpha y + \frac{1}{2}e^{\alpha y}
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = 1 + \alpha^{2} \cdot \alpha y + \frac{1}{2}e^{\alpha y}
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = \frac{1}{2}e^{\alpha y} \left(\alpha, y\right) = \frac{1}{2}e^{\alpha y} \left(\alpha, y\right)
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = \frac{1}{2}e^{\alpha y} \left(\alpha, y\right) = \frac{1}{2}e^{\alpha y} \left(\alpha, y\right)
$$
\n
$$
\frac{d}{dx}\left(\alpha, y\right) = \frac{1}{2}e^{\alpha y} \left(\alpha, y\right) = \frac{1}{2}
$$

 $l = 3(x-1) + 2(y-1) + (z-1) + 4$

Gradient

Monday, October 26, 2020 10:01 AM

Gradient
\nLet
$$
\delta(x,y)
$$
 (or $g(x,y,z)$) be a differentiable function,
\nthe derivative of $\delta(x,y) = L(x,y) + L(x,y,y)$ is:
\n $DS(x,y,z) = L \frac{\partial F}{\partial x}(x,y,z) \frac{\partial F}{\partial y}(x,y,z)$
\nThe gradient of $\delta(x,y) = (x,y, y,z)$
\nis the vector
\n $\nabla f(x,y,y) = (\frac{\partial F}{\partial x}(x,y,y,z), \frac{\partial F}{\partial y}(x,y,y,z))$
\nfor $g(x,y,z)$:

$$
D g(x_0, y_0, z_*) = \begin{bmatrix} \frac{\partial g}{\partial x} (x_0, y_0, z_0) & \frac{\partial g}{\partial y} (x_0, y_0, z_0) & \frac{\partial g}{\partial z} (x_0, y_0, z_0) \end{bmatrix}
$$

$$
\nabla g(x_{0}, y_{0}, z_{0}) = \left\langle \frac{\partial g}{\partial x}(x_{0}, y_{0}, z_{0}) - \frac{\partial g}{\partial y}(x_{0}, y_{0}, z_{0}) - \frac{\partial g}{\partial z}(x_{0}, y_{0}, z_{0}) \right\rangle
$$

Geometrically

\n
$$
\nabla \mathcal{F}(\alpha_{o}, \gamma_{o}, z_{o})
$$
\n1. points in the direction of $(\alpha_{o}, \gamma_{o}, z_{o})$

\n2. $|| \nabla \mathcal{F}||$ is 1.

If
$$
f(x, y, z) = c
$$

\nthen ∇f is tangent to the *level set* ωc

\nand the tangent plane is

\n $0 = \nabla f \cdot \langle x - x_{o}, y - y_{o}, z - z_{o} \rangle$

\nIf points in the *dimic* \bigcirc \neg *the greatest increase*

Directional Differentiation

Wednesday, November 4, 2020 9:59 AM

Second Derivative

Friday, November 6, 2020 10:32 AM

Suppose
$$
3(w,y)
$$
 is a l^2 -function $l^2 = 6w$
\nconstituting ds is the result about derivatives:
\n
$$
\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)
$$
\n
$$
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)
$$
\n
$$
\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)
$$
\n
$$
\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)
$$
\n
$$
\frac{\partial^2 f}{\partial x^4} = \frac{\partial^2 f}{\partial y \partial y} \left(\frac{\partial^2 f}{\partial y^2} \right)
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y^2}
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y^2}
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y^2}
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial y} = \frac{\partial^2 f}{\partial y \partial y}
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial y}
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial y}
$$
\n
$$
\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial^2 f}{\partial y \partial y}
$$
\n
$$
\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial^2 f}{\partial y \partial y}
$$
\n
$$
\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial^2 f}{\partial y \partial y}
$$
\n
$$
\frac{\partial^2 f}{\partial y \partial y} = \frac{\partial^2 f}{\partial y \partial y}
$$
\n<math display="</p>

Let
$$
f(x,y)
$$
 be a function with a critical point (x_0, y_0) ,
\nlet the Hessian motion
\n $H = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be the matrix at (x_0, y_0)
\nThe second derivative test (for 2D functions):
\n $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} > 0$ $\frac{f}{\partial x} = \frac{\partial^2 f}{\partial y^2} = 0$ $\frac{f}{\partial x} = \frac{\partial^2 f}{$

$$
i f de b (H) c O then (x_0,y_0) is a saddle point.
$$

Displacement and Arc Length

Monday, November 23, 2020 10:36 AM

For a curve
$$
C \in \mathbb{R}^2
$$
 or \mathbb{R}^3 parameterized by the
path $c(t) = \langle \alpha(t) \rangle$ $y(t) = z(t)$

- 1. The displacement between $t = a$ and $t = b$ is $c(b) - c(a)$
- 2. The length of the are between t=a and $t = b$: $\Delta \gamma = \gamma(b) - \gamma(a) = \int_{a}^{b} \gamma'(b)dt$ $\Delta y = y (b) - y(a) = \int_{a}^{b} y'(b) d6$ $\Delta 2$ = $2(b) - 2(a) - \int_{a}^{b} 2'(t) dt$ $Displacement = ||\langle \Delta \gamma | \Delta y | \rangle = ||$ $= \int \Delta \alpha^2 \sqrt{4 \Delta y^2 + \Delta z^2}$

3. The arc length is the length of the curve C between
\n
$$
6 = \alpha
$$
 and
$$
4 = 5
$$
. Rather than integrating velocity,
\nwe integrate speed.
\n
$$
\overline{C}(C_{i\alpha}) - \overline{C}(C_{i\alpha}) = \alpha
$$
.
\nlength spectrum $\overline{C}(C_{i\alpha})$ and
$$
\overline{C}(C_{i\alpha}) \propto ||\overline{C}(C_{i\alpha}) - \overline{C}(C_{i\alpha})||
$$

\n
$$
\approx ||\overline{C}(C_{i\alpha})|| \approx \alpha
$$

\nSo the arc length $\alpha \ge \frac{1}{\alpha}$ || $\overline{C}(C_{i\alpha})||$

So the arc length
$$
\alpha \sum_{i=1}^{n} ||\overline{C}'(t_i)||bE
$$

note: This formula works in any dimmensionality. sometimes the arc length and the length of the curve.

 $\overline{c}:\begin{bmatrix}0&4_{\pi}\end{bmatrix}\rightarrow\mathbb{R}^{2}$ Cg . $6 \longrightarrow (csc(e), sin(e))$ arclength = $\int_{0}^{4\pi}$ // c '(t)// At ² $\int_{0}^{u} \sqrt{(-sin (t))^{2} + (cos (t))^{2}} dt$ = $\int_{0}^{4\pi}$ $\sqrt{1}$ de $=$ $\sqrt{4\pi}$ but the length of the path should be ZTC. in this example, we go around the circle twice.

Rule3	
A) Let $f: \mathbb{R}^k \rightarrow \mathbb{R}$, let $\lambda \in \mathbb{R}$	
$D(\lambda f(x,y)) = \lambda Df(x,y)$	
$\overline{\delta_{NN}} = \overline{\delta_{yy}} \overline{J} = \lambda \left[\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right]$	
also:	$\nabla(\lambda f) = \lambda \alpha f$
B) $\overline{\delta_{xy}} = \overline{\alpha}^2 \rightarrow \mathbb{R}$	
$D(\overline{f} \cdot y) = \overline{\beta f} \cdot \beta f$	
$\left[\alpha \overline{b} \right] \cdot \left[\alpha \overline{d} \right] = \left[\alpha \overline{c} - \overline{b} \overline{c} \overline{d} \right]$	
Product Rule	
$\overline{f} \cdot g : \overline{\mathbb{R}}^2 \rightarrow \overline{\mathbb{R}}$	
$D(\overline{f} \cdot g) = \overline{f} \overline{\beta_g} + \overline{g} \overline{d} \overline{d} \right)$	
$\text{Div}(f) = \overline{f} \cdot \overline{f$	

 f_{com}

The hard case:
\n
$$
\frac{The hard case:}{LeE : R^{l} \rightarrow R^{m}}
$$
 so $F(\langle x_{1},...,x_{2}\rangle) = \langle F_{1}(x_{1},...,x_{2})\rangle$, $F_{m}(\langle x_{1},...,x_{2}\rangle)$
\n
$$
G : R^{m} \rightarrow R^{n}
$$
 so $G(\langle x_{1},...,x_{m}\rangle) = \langle G_{1}(\langle x_{1},...,x_{m}\rangle) \dots F_{m}(\langle x_{1},...,x_{m}\rangle))$
\nWe want to find D(GoF) Institute that
\n $R^{l} \rightarrow R^{m} \rightarrow R^{n}$ must be followed.
\nD(GoF) = DGLF(x, ..., x_{e})) \cdot DF(x, ..., x_{e})
\n $\frac{m \times L}{m \times L}$ multiplyiation

Where

$$
DH(\lambda_{1},\lambda_{n}) = (y_{1}, y_{m})
$$
\n
$$
= y_{1}
$$
\n
$$
\vdots
$$
\n
$$
y_{m}
$$
\n
$$
\downarrow
$$
\

Matrix Multiplication

Friday, October 30, 2020 10:28 AM

$$
b_{\text{inter 30, 2020}} = 10.28 \text{ am}
$$
\n
$$
d_{\text{inter 30, 2020}} = 10.28 \text{ am}
$$
\n
$$
d_{\text{inter 30, 2020}} = 10.28 \text{ am}
$$
\n
$$
d_{\text{inter 30, 2020}} = 10.28 \text{ am}
$$
\n
$$
d_{\text{inter 30, 2020}} = 10.28 \text{ am}
$$

where the term
$$
T_{ij}
$$
 is computed by taking the
ith you vector of A and x jth column vector
of B

$$
(A * B)_{ij} = A_{row i} \cdot B_{col j} = \sum_{k=1} a_{ik} b_{kj}
$$

Optimization Friday, November 13, 2020 10:37 AM
Finding Local Extremu: $Critical points are where $\nabla f = O$$ Use heshian matrix to determine type of critical point. Finding Global Extrema: Let $A \in \mathbb{R}^2$ be a closed and bonaded set. Closed: is contained around some boundary path bounded is finite in size $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ LeE global extrema of f in the set A To find 1) Find all the local extrema on the interior of A of S ie $Uf = O$ all the local extrema on the boundary 2) $Find$ of f. ie plug A into f and find critical $\int A$ ρ oints. 3) The global extrema is the most extreme (longest/
smallest value(s) between the local extrema in

the set A and the boundary.

LaGrange Multipliers

Monday, November 16, 2020 10:36 AM

the functions of Con some boundary) We needed to optimize Labrange Multipliers help optimize on JA, especially when JA is a level set

The idea Suppose we have curve $\left(\begin{array}{cc} \in \mathbb{R}^2 \end{array}\right)$ and $\oint \mathbb{R}^2 \to \mathbb{R}$

the directional tangent to C at (γ_g, γ_g) then TS \vec{v} is devivative: $\nabla \oint (\gamma_{\rho} , y_{\rho}) \cdot \vec{v}$ approvimates the change in f as you move alony V. If $\sigma f_{(\gamma_{\sigma}, y_{\sigma})}$. \vec{v} > 0, then \vec{s} is increasing in direction \vec{v} $\mathcal{I}\mathcal{I}$ maximum both mean that the point is not at α or a minimum of $\frac{1}{2}$ on C . The only vay (1., y.) can be a local extrema $\int f(x,y) dx$ $\int f(x_0,y_0) dx$ is normal to curve C . Equation:

\n
$$
\nabla f = \lambda \cdot \nabla b
$$
\n

\n\nwhere ∇b is the gradient of the boundary as a non-parameterized function (i.e., $x^2 + y^2 = 4$)\n

\n\n Theorem\n

\n\n Let $g : \mathbb{R}^2 \to \mathbb{R}$ be a scalar function and let $S \in \mathbb{R}^m$ be the levels of the levels of level C.\n

\n\n Let $S: \mathbb{R}^m \to \mathbb{R}$ be a scalar function\n

\n\n Suppose $(a, \ldots, a_n) \in S$ is a local extension of S.\n

\n\n If $\nabla g(a_1, \ldots, a_n) = \lambda \nabla g(a_1, \ldots, a_n) \quad \text{for some } \lambda \in \mathbb{R}$ \n

\n\n If $\nabla g(a_1, \ldots, a_n) = \lambda \nabla g(a_1, \ldots, a_n) \quad \text{for some } \lambda \in \mathbb{R}$ \n

\n\n If $1: \text{d}r : \text{d}$

Integration

Monday, November 30, 2020 10:02 AM

Double	Integrals as values
Le ⁶	R = [a, b] × [c, d] < R
be the following rectangle:	
d\n $\begin{bmatrix}\n \frac{1}{\sqrt{1-\frac{1}{2}}}\n \frac{1}{\sqrt{1-\frac{1}{2}}}\n \frac{1}{\sqrt{1-\frac{1}{2}}}\n \frac{1}{\sqrt{1-\frac{1}{2}}}\n \frac{1}{\sqrt{1-\frac{1}{2}}}\n \end{bmatrix}$ \n	
The volume (x, y) be (x, y) be (x, y) be (x, y) be $1 - (x, b)$ and (x, d) \n	
0 $\leq z \leq f(x, y)$	
where $(x, y eR)$	
\n $\begin{bmatrix}\n f(x, y) dy \, dx = \int_{c}^{d} \int_{\infty}^{b} f(x, y) dy \, dy \\ \frac{1}{\sqrt{1-\frac{1}{2}}}\n \end{bmatrix}$ \n	
is the volume of S	
read: 'the integral'' of f over R	

Cavalieri"s Principle

Monday, November 30, 2020 10:16 AM

Cavalieri's Principle Given some 8D volume! we CGA slice the volume into ج ابن د حيا Ly = d $y = c$ $N_i =$ Volume petreen y_{i-1} × y_i Volume of $S = \sum_{i=1}^{M} V_i$ where $V_i = (cross) secbinal area$). Δy We define a function $A(y) = (c$ voss sectional area at y) Volume of $S \approx \sum_{i=1}^{n} A(y_i)$ ay a_3 $n \rightarrow \infty$ $S = \int_{a}^{b} A(y) dy$ The volume is the integral of the cross sectional area.

Integration Rules

Monday, November 30, 2020 10:31 AM

"Partial Integrals" $\int \chi + \eta \ d\chi$ Y is constant, integrat with normal rules $=$ $\frac{1}{2}$ γ 2 + y γ Iberative Integrals $\int_{a}^{b} \int_{c}^{d} f(\gamma, y) dy dx = \int_{a}^{b} \left(\int_{c}^{d} f(\gamma, y) dy \right) dy$ Is the same as: • Treat y as constant $\int_{c}^{\alpha} \int_{a}^{b} f(x, y) dx dy$ · Integrate ul respect to y · Computer the y as constant which gives the cross Sect. are a

Summary

Wednesday, December 2, 2020 10:12 AM

Integrateing over rectangles
Let $R = \{n, 5\} \land L \in \mathcal{A} \cup F$
We want to solve the definition
\n $\iint_{S} S(x, y) dy dx$ \n
For any continuous function $S(y, y)$
For any continuous function $S(y, y)$
Then integral of $S(x, y)$ over R is:
\n $\iint_{R} S(y, y) dy dx = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} S(y_i, y_i) dy dx \right)$ \n
Propertyes
1. If $S = \{ (x, y) \} \land O = \{ dx \}$
Remember as $\{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{A} \} \land (\neg y, y) dy = \{ x \in \mathcal{$

Friday, December 4, 2020 10:21 AM

\n
$$
\begin{array}{ll}\n 10 & \text{simplify, we only consider the lemma to give a special equation: } \\
A & \text{region is called } y\text{-simple} & \text{if you can describe the which} \\
2 & \text{functions} & \text{if } x: f_1(x), f_2(x) \\
\text{where } R: s \quad (x, y) \in \mathbb{R}^2 & \text{such that } g_1(x) \\
f_1(x) \leq y \leq f_2(x) & \text{and } x \in [a, b]\n \end{array}
$$
\n

 \mathcal{A} region is x-simple if there are g_{1} (y) , y_{2} (y) s , k hat:

 R is $(x,y) \in R^2$ satisfying $g_{\iota}(y) \in \gamma \in g_{\iota}(y)$

A region is simple if it is α -simple and y-simple. Integrating over some simple region $y \in [c,d]$ $g(y)$ $g(z)$ $\int d\omega$ $\int f(x,y)$ $\int_{0}^{\infty} \frac{1}{\sqrt{1-\frac{1}{2}}} \int_{0}^{\infty} \frac{1}{\sqrt{1-\frac{1}{2}}} \, d\mu = \frac{1}{2} \int_{0}^{\infty} \frac{1}{\sqrt{1-\frac{1}{2}}} \, d\mu = \frac{1}{2$

$$
\iint_{R} \oint(\gamma, y) dy dx = \int_{c}^{d} \left(\int_{g,(y)}^{g(y)} f(\gamma, y) dy \right) dx
$$

\nwe [c, d] $f_{(x)} = \int_{c}^{d} \left(\int_{f_{(x)}}^{f_{(x)}} f(\gamma, y) dy \right) dy$
\n
$$
\iint_{R} f(\gamma, y) dx dy = \int_{c}^{d} \left(\int_{f_{(x)}}^{f_{(x)}} f(\gamma, y) dy \right) dy
$$

\nIf R is α -simple and y -simple:
\n
$$
\iint_{R} f(\gamma, y) dy dx = \int_{g(x)}^{g(x)} \int_{f_{(x)}}^{f_{(x)}} f(\gamma, y) dy dy
$$

\n
$$
= \int_{g_{(x)}}^{g_{(x)}} \int_{g_{(x)}}^{g_{(x)}} f(\gamma, y) dy dy
$$

Wednesday, December 9, 2020 10:01 AM

Changing the order of integration
\n δ bar ⁺ ω sinple ω sinle ω sinle ω
\n γ sin angle: $\log \omega$ sinh ω sinh ω
\n γ sin angle: $\log \omega$ sinh ω sinh ω
\n γ sin angle: $\log \omega$ sinh ω sinh ω
\n γ sin angle: $\log \omega$ sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω sinh ω sinh ω
\n γ sinh ω

Friday, December 11, 2020 10:27 AM

Triple Integrals

\n
$$
\begin{array}{lll}\n\mathcal{R} & = & \mathcal{L} \text{ a. b. } \mathcal{L} \times \mathcal{L} \text{ c. } \mathcal{L} \mathcal{I} \times \mathcal{L} \text{ e. } \mathcal{F} \mathcal{I}\n\end{array}
$$
\nSo

\n
$$
\begin{array}{lll}\n\mathcal{L} \leq & \mathcal{L} \leq & \mathcal
$$

$$
(a_{x}, a_{y,azapart})
$$
\n
$$
\iint_{R} f(x, y, z) dz dy dx
$$
\n
$$
= \lim_{n \to \infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{i}, y_{i}, z_{i}) dz dy dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{i}, y_{i}, z_{i}) dz dy dx \right)
$$
\n
$$
\iint_{C} f(x, y, z) dz dy dx
$$
\n
$$
= \lim_{n \to \infty} \left(\int_{C} f(x, y, z) dz dy dx \right)
$$
\n
$$
\iint_{C} f(x, y, z) dz dy dx
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
\iint_{C} f(x, y, z) dz dy dx
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\lim_{n \to \infty} \frac{f(x, y_{i}, z_{i})}{n
$$